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1,4-DCB = 1,4-dichlorobenzene 

1,3-DCP = 1,3-dichloropropene 
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B[a]P = benzo[a]pyrene 

ETS = environmental tobacco smoke 

HAPs = Hazardous air pollutants 

IRIS = Integrated Risk Information System 

NATA = National Air Toxics Assessment 

NHAPS = National Human Activity Patterns Survey 

NHEXAS = National Human Exposure Assessment Survey 

OEHHA = Office of Environmental Health Hazards Assessment (State of California) 

PAH = Polycyclic aromatic hydrocarbon 

PAH B2 = polycyclic aromatic hydrocarbons with more evidence of carcinogenicity 
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PAH CD = polycyclic aromatic hydrocarbons with less evidence of carcinogenicity 

RIOPA = Relationship of Indoor, Outdoor, and Personal Air 

TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin 

TEAM = Total Exposure Assessment Methodology 

TEF = Toxicity equivalence factors 

TEQ = Toxic equivalent  

U.S. EPA = Environmental Protection Agency (U.S.) 

VOC = Volatile organic compound 
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Abstract 

Background: This study compares cancer risks from organic hazardous air pollutants 

(HAPs) based on total personal exposure summed across different microenvironments and 

exposure pathways.  Methods: We developed distributions of personal exposure 

concentrations using field monitoring and modeling data for inhalation and, where relevant, 

ingestion pathways.  We calculated risks for a non-occupationally exposed and non-smoking 

population using U.S. (U.S. EPA) and California Office of Environmental Health and Hazard 

Assessment (OEHHA) unit risks.  The contribution to risk from indoor versus outdoor 

sources was determined using indoor/outdoor ratios for gaseous compounds and the 

infiltration factor for particle-bound compounds.  Results: Using OEHHA’s unit risks, the 

highest ranking compounds based on the population median are 1,3-butadiene, formaldehyde, 

benzene, and dioxin, with risks on the order of 10-4 – 10-5.  The highest risk compounds 

using the U.S. EPA unit risks were dioxin, benzene, formaldehyde, and chloroform, with 

risks on a similar order of magnitude.  While indoor exposures are responsible for nearly 

70% of risk using OEHHA’s unit risks, when infiltration is accounted for, inhalation of 

outdoor sources contributed 50% to total risk, on average.  Additionally, 15% of risk 

resulted from exposures through food, mainly due to dioxin.    Conclusions:  Most of the 

polycyclic aromatic hydrocarbon, benzene, acetaldehyde, and 1,3-butadiene risk came from 

outdoor sources, while indoor sources were primarily responsible for chloroform, 

formaldehyde, and naphthalene risks.  The infiltration of outdoor pollution into buildings, 

emissions from indoor sources, and uptake through food are all important to consider in 

reducing overall personal risk to HAPs.  
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Introduction 

The U.S. Clean Air Act designates hazardous air pollutants (HAPs) as those that “may 

reasonably be anticipated to be carcinogenic, mutagenic….” (CAAA 1990) and exhibit other 

adverse health effects.  Effective reduction of exposures to HAPs requires determining the 

compounds, exposure pathways, and sources that contribute the most to human health risk.   

Many prior risk assessments for HAPs have been limited by either including only 

indoor or outdoor concentrations or examination of a small subset of carcinogenic HAPs.  

The U.S. Environmental Protection Agency (U.S. EPA) assessed the nationwide risk from 

outdoor concentrations of most of the HAPs.  Based on the Assessment System for 

Population Exposure Nationwide (ASPEN) model, the U.S. EPA found that almost half of 

total estimated lifetime cancer cases from HAPs could be attributed to volatile organic 

compounds (VOCs), with another 40% from polycyclic aromatic compounds (PAHs) 

(Woodruff et al. 2000).  The median cancer risk was 17 cases out of every 100,000 people.  

An updated assessment finds a median risk of 4 in 100,000 (U.S. EPA 2006) accounting for 

changes in emissions estimates and lower cancer potency values for some of the larger 

contributors to risk (particularly 1,3-butadiene and formaldehyde).  However, outdoor 

exposures account for only a portion of risk for many compounds.   

In two older studies using indoor concentrations from homes and offices, one by 

Tancrede and another by McCann, calculated cancer potency factors with data from animal 

and human studies.  Tancrede found annual mean risks from indoor air to be about 1 in 

10,000 to 1 in 100,000 and McCann’s risks are about an order of magnitude higher (McCann 

et al. 1986; Tancrede et al. 1987).  Concentrations of many of these compounds, however, 

have changed since these studies were completed.   

Personal exposure measurements from the Total Exposure Assessment Methodology 

(TEAM) studies provided estimates of individual cancer risks from benzene ranging from 1 
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in 10,000 for non-smokers to 7 in 10,000 for smokers (Wallace 1991a).  More recently, 

Payne-Sturges et al. found risks from personal exposure over three times higher than those 

calculated using the ASPEN modeled outdoor concentrations (Payne-Sturges et al. 2004).   

Sax et al. also found risks from personal exposures of inner city teenagers to be on the order 

of 1 in 10,000 (Sax et al. 2006).  Despite these studies, there has not been a broad analysis 

of cancer risk integrating total personal exposure to a wide range of organic HAPs in multiple 

microenvironments and across different exposure pathways.  Also, two potentially high-risk 

classes of HAPs have not been included in previous personal exposure risk assessments – the 

dioxins and the polycyclic aromatic hydrocarbons. 

Exposure to semi-volatile HAPs, such as dioxins/furans and polycyclic aromatic 

hydrocarbons (PAHs), can also come from non-inhalation pathways, especially food 

ingestion (Butler et al. 1993; Ramesh et al. 2004; U.S. EPA 2003).  Although these 

compounds are primarily released to the air, some fraction is bound to particulate matter and 

then deposited onto vegetation or water bodies where they build up in the food chain. Multi-

media sampling has been done previously (Butler et al. 1993; Chuang et al. 1999), but only 

for a specific compound or class of compounds, and the risks of multi-pathway exposures 

have not been analyzed or compared across compound groups. 

 To gain a wider perspective on population risks from organic HAPs, we estimated the 

cancer risks in the US by using calculated total personal exposure.  We restricted ourselves 

to organic compounds that were responsible in aggregate for over 87% of the risk from 

Woodruff et al. (2000), along with several others with known indoor sources or for which 

ingestion is a main route of exposure.  We chose to first model baseline exposures, defined 

as those not including specifically known and consistent high exposure scenarios.  We also 

examine situations for some compounds where a particular and relatively constant high 

exposure scenario can be developed.   
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We developed a flexible modeling framework that integrates data from different 

sources.  The modeled personal exposure distributions were multiplied by a measure of 

cancer potency to calculate risk distributions that were ranked relative to each other.  Since 

there is significant uncertainty in the toxicity estimates, we compared the risks calculated 

using two different sets of cancer potencies – U.S. EPA’s Integrated Risk Information System 

(IRIS) and the California Office of Environmental Health and Hazard Assessment (OEHHA).  

In addition, we compared the proportion of risk attributable to indoor, outdoor, and ingestion 

exposures with the proportion of risk attributable to indoor and outdoor sources.  

 

Methods 

In this analysis, we 1) develop personal exposure distributions; 2) calculate and 

compare baseline risks; 3) examine the influence of alternative scenarios in exposure patterns 

and uncertainties in toxicity estimates on the results of the baseline assessment; 4) determine 

the relative contribution of the ingestion pathway and the various inhalation 

microenvironments to the baseline risk; and 5) disaggregate risk into indoor and outdoor 

source components.  

Our baseline model represents a non-specified population of office-working and non-

employed adults between the ages of 18-65, which are assumed to be a relatively “low 

exposure” population.  We do not include smokers or manufacturing workers in the baseline 

because these populations are expected to have higher exposures from sources for which 

characterization was beyond the scope of this assessment. We classified compounds based on 

the availability of concentration data, emissions sources, and the primary route of exposure.   

• Group 1 compounds are VOCs expected to come only from outdoor sources and include 

vinyl chloride, carbon tetrachloride, 1,3-dichloropropene, ethylene dibromide, and 
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ethylene dichloride.  Measured ambient concentrations are not readily available for 

most of these compounds.    

• Group 2 compounds are VOCs with indoor and outdoor sources, and available data on 

concentrations in the home and other microenvironments.  Group 2 includes benzene, 

formaldehyde, chloroform, 1,4-dichlorobenzene, methylene chloride, trichloroethylene, 

perchloroethylene, 1,3-butadiene, and acetaldehyde.   

• Group 3 compounds are semi-volatile, with a substantial amount of exposure from 

ingestion, and include PAHs and dioxins.  

 Since the results are dependent on the assumptions and choices for the input 

parameters, we conducted several analyses to examine the effect of variability in exposure 

and uncertainty in cancer potency values.  We quantified exposure parameter variability 

associated with the baseline distribution, assuming that the higher percentiles of the 

distribution will encompass highly exposed individuals, except for cases where there is 

evidence of a bi-modal distribution.  In the latter case, there may be specific instances with 

additional indoor or outdoor sources, leading to a separate exposure distribution from the 

general population and, consequently, a different risk ranking.  Regarding toxicity, cancer 

potency factors have not previously encompassed heterogeneity across the population; 

however, we examined uncertainty by comparing the results from 2 different sets of cancer 

potency factors.        

Exposure Model.  Figure 1 illustrates the overall model used in this analysis.   

Exposure was calculated using Monte Carlo simulations in Crystal Ball (Decisioneering) 

according to equation 1: 

i

k

i
itC

T
E ∑

=

=
1

1      [1] 

E = the exposure to an individual of pollutant X (summed over k microenvironments) 

Ci = the concentration in the ith microenvironment  
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ti = the time spent in the microenvironment  

T = the total amount of time  

Distributions for the time spent in each microenvironment were taken from the 

National Human Activity Patterns Survey (NHAPS) (Graham and McCurdy 2004; Kleipeis et 

al. 2001; McCurdy and Graham 2003).  The model population consisted of 4 types of 

people, sampled according to the percentage of the population that they represent in the 2000 

Census (Clark and Weismantle 2003) - non-working males (11%), working males (38%), 

non-working females (17%), and working females (33%).  Since NHAPS only provides 

cross-sectional 24-hour data, each working person has the same weekday 5 days of the week 

and the same weekend day for two days.  Non-working individuals have the same day seven 

days a week.   The workday data came from people surveyed on a day they went to work, 

and weekend data came from working people surveyed on a day they did not go to work.  In 

order to preserve the relationship between time in each microenvironment, we sampled from 

the NHAPS individuals’ diary-days directly.   For the risk calculation we assume that these 

week-long exposures are representative of lifetime exposures. 

Concentration distributions were derived by evaluating and combining data reported 

in several studies.  We searched the peer-reviewed literature for studies that measured the 

compounds of interest in each microenvironment, giving preference to studies conducted in 

the US and after 1995, to reflect more recent emission sources.  Most of the data used were 

published prior to 2006.  A small subset was obtained directly from the study investigators.   

For Group 1 compounds, we derived ambient concentration distributions from 

ASPEN model results.  These concentrations were used as personal exposure 

concentrations, since we assume no indoor sources for these compounds.  ASPEN estimates 

ambient concentrations of HAPs for each census tract in the US and includes emissions from 

point, area, and mobile sources, as well as secondary formation, decay, and deposition.  
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ASPEN is the most comprehensive and spatially representative source of information for all 

outdoor HAPs concentrations.  We used ambient concentrations for all census tracts based 

on 1996 emissions data, the most recent data available at the time this analysis was conducted 

(U.S. EPA 1996b) (Table 1).   

For Group 2 compounds, we compared each study’s reported parameters (usually the 

arithmetic mean and standard deviation, and median and 90th percentiles), the percentage of 

detectable samples, and the limits of detection, where reported.  When deriving the final 

input distributions, we combined studies by weighting each city/geographic region equally.  

If multiple studies were conducted in an area, each study was given equal weight to 

determine the distribution in that city/geographic region.  We assumed lognormal 

distributions for all studies where raw data were not available to us and fit the reported 

parameters in Crystal Ball (Table 2).   

In-home and outdoor concentrations were derived from studies conducted in a range 

of urban and suburban communities, ranging from both coasts of the United States and the 

Midwest and southwest, and including various ethnic groups and neighborhood sources (see 

Table 2).  If more than 50% of the values were under the detection limit, and the detection 

limit was deemed to be high compared with other studies, we chose not to use those data.  In 

all other cases of low detects, we did not discard the study, as these values indicate a low 

environmental concentration level.  We compared the studies qualitatively to assess whether 

a particular one appeared to indicate a higher or lower distribution than other studies, or if 

there appeared to be a subpopulation with a distinctly different concentration distribution.  

Outdoor distributions were similarly developed.  

Studies where the mean exceeded the 90th percentile (a highly skewed distribution) 

were not included in the baseline.  Indoor data excluded were from Sax et al. from New 

York City in their summer sampling for 1,4-dichlorobenzene, and NHEXAS 
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trichloroethylene data from U.S. EPA’s Region 5.  We also did not include any studies 

where the 90th percentile for 1,4-dichlorobenzene exceeded 100 μg/m3, which was over 100 

times the median.  Such a large tail indicated several homes from a few studies with 

extremely high concentrations, bringing the means to be almost 10 times the means of other 

studies (Adgate et al. 2004b; Sax et al. 2004).   

Data for transportation, shopping, dining, and office workplaces were taken from 

various studies listed in Table 2.  The miscellaneous “other” microenvironment was 

assigned the same concentration distributions as the outdoors.  

Group 3 compounds consist of congeners that are weighted by a toxicity equivalence 

factor (TEF) relative to a reference congener (benzo[a]pyrene (B[a]P) for PAHs and for 

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for dioxins).  We summed the TEF-weighted 

exposure concentrations for each congener to arrive at a total toxic equivalent (TEQ) 

concentration.   

The PAHs were divided into two groups based on the evidence available for 

carcinogenic effects.  The first group (benzo[a]anthracene, benzo[b]fluoranthene, 

benzo[a]pyrene, chrysene, dibenzo[a,h]anthracene, indeno[1,2,3-cd]pyrene) have evidence of 

carcinogenicity from animal studies, and we refer to them as PAH B2.  Concentrations in air 

and food were available for these compounds.  The second group (anthracene, 

benzo[g,h,i]perylene, phenanthrene, pyrene, fluoranthene) are less certain to be carcinogens 

and are named PAH CD.  We only consider the inhalation pathway for the PAH CD 

compounds, as most of these compounds have not been as successfully quantified in food and 

have much smaller contributions to the total TEF weighted food exposure than the PAH-B2 

compounds.  Naphthalene is treated separately because it has TEF weighted concentrations 

that are at least an order of magnitude higher than other PAHs.  



13 

Home indoor and outdoor air PAH concentrations came from the Relationship of 

Indoor, Outdoor, and Personal Air (RIOPA) study in Los Angeles, California; Houston, 

Texas; and Elizabeth, New Jersey (Naumova et al. 2002).  We combined reported gas- and 

particulate-phase PAH congener distributions to arrive at a total concentration distribution for 

each congener (Table 3).  Naphthalene was not included in the above study; therefore, we 

used indoor data from other, smaller studies (Jia et al. 2005; Van Winkle and Scheff 2001).  

Several studies were excluded because there were a greater percentage of below-detection 

limit values, due to high detection limits, or because the measurements were taken from 

studies that were much earlier than our time criteria.  We included correlations in the 

indoors and outdoors for non-smoking homes to avoid artificially lowering the variability of 

the ultimate distribution, since many congeners have similar sources.  Most studies did not 

report correlations between compounds, so we had to use a study conducted too early to be 

included in our overall distributions (Mitra and Ray 1995).  

Since PAH concentrations decrease sharply within less than a hundred meters from 

the road (Levy et al. 2003; Zhu et al. 2002), it is preferable, in the absence of commuter 

exposure data, to use roadside data to represent transportation microenvironments.  

Concentrations of specific congeners of PAHs in US transportation microenvironments were 

not found in our literature search at the time of model development, therefore we used data 

from a roadside study in Denmark (Nielsen 1996).  For congeners not reported in this study, 

we substituted the outdoor concentration (see Table 3).  Because little information on PAH 

concentrations exists for other microenvironments, except for naphthalene in offices, we used 

the outdoor concentration instead. 

PAH ingestion exposures were derived from a study of B[a]P in food in the US 

(Kazerouni et al. 2001) (Table 3).  Since no other congeners were reported, we determined 

the contribution of B[a]P to total PAH in food by taking the ratio of each TEF-weighted PAH 
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to B[a]P from several studies in Europe (Devos et al. 1990; Falco et al. 2003; Lodovici et al. 

1995; Thomson and Muller 1998).  We found that B[a]P is responsible for 30-80% of the 

TEF weighted mixture, with a mean value of 58%. We divided the B[a]P exposure in 

Kazerouni’s U.S. study by this percentage.  

Exposure to dioxins and dioxin-like compounds is dominated by ingestion, therefore 

inhalation exposures for dioxin were not included (Safe 1998; U.S. EPA 2003).  We used 

the U.S. EPA evaluation of ingestion from surveys of dioxin concentrations in different foods 

and geographic areas and estimated intake rates from the Exposure Factors Handbook (U.S. 

EPA 2003) (Table 3). 

Industrial areas.  Heavily industrial areas that are sources of Group 1 compounds 

may not be adequately reflected in the tails of the general population exposure distributions.  

About 1% of all counties had median concentrations significantly higher than the medians of 

all other counties.  A lognormal concentration distribution was fit based on the NATA 

median and 95th percentile values for these counties (Table 1).  We included compounds for 

which the ratio of the mean concentration of the top 1% counties to the baseline was greater 

than 2 (vinyl chloride and 1,3-dichloropropene) in the alternative scenario.    

1,4-Dichlorobenzene.  Homes with high levels of 1,4-dichlorobenzene in several 

studies were associated with users of moth repellants and/or deodorizers, representing a 

subset of the population with a separate 1,4-dichlorobenzene distribution and modeled as an 

alternative high exposure scenario (Table 2). 

Smoking.  We derived the incremental exposure from environmental tobacco smoke 

(ETS) from Nazaroff and Singer (Nazaroff and Singer 2004), who calculated a daily time-

averaged concentration of for acetaldehyde, formaldehyde, benzene, and 1,3-butadiene 

attributed to ETS.  For PAHs, we calculated the difference between smoking and non-

smoking home mean concentrations of PAHs (Mitra and Ray 1995).   
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Risk calculation. Risks were calculated by multiplying the intake of a substance by 

the cancer potency factor.  The cancer potency factor has historically been a linear 

extrapolation from the high-dose animal or human studies to the low doses of environmental 

exposure using either a maximum likelihood estimate (for epidemiology) or the upper 95th 

percent confidence limit (for animal studies) on the dose-response.  Baseline risk was 

calculated using OEHHA values, because these include compounds for which the U.S. EPA 

IRIS database does not have listed inhalation unit risks (Table 4).  The TEQ exposures for 

Group 3 compounds were multiplied by the cancer potency factor for the reference 

compound.  

Indoor and outdoor source contribution.  To obtain the source contributions to 

exposure, we subtract out the contribution to indoor concentrations from infiltration from the 

outdoors, and add this latter amount to the outdoor contribution.  Exposure to Group 1 

VOCs was assumed to be the same indoors as outdoors, due to a lack of indoor sources and a 

penetration efficiency for gases of 1 (Lewis and Zweidinger 1992).  Dioxins were assumed 

to have outdoor sources only.  Microenvironments with indoor sources were home, work 

(office), shopping, and dining.  Microenvironments classified with only outdoor source 

contributions were travel, the outdoors, and the other non-defined microenvironments, and 

ingestion.   

For gas-phase pollutants, the indoor-outdoor ratio was used to determine the indoor 

and outdoor contribution of each pollutant to the indoor concentrations.  We calculated the 

fraction from indoor sources for the gas-phase and particle-phase PAHs separately.  We 

used the phase distributions for each congener reported from the RIOPA study (Naumova et 

al. 2003) and assumed 100% infiltration efficiency for the gas phase portion and an 

infiltration factor of 0.69 for the particle phase, from Meng et al. for the RIOPA data (Meng 

et al. 2005).   
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Results 

Baseline risks.  Figure 2 shows the baseline risk ranking using OEHHA unit risks or 

cancer potency factors, along with the median risk calculated using the U.S. EPA potency 

factors.  Compounds with median risks falling near 1 x 10-4 are 1,3-butadiene, benzene, 

formaldehyde and dioxin through food.  Compounds with risks between 1 x 10-4 and 1 x 10-

6 include carbon tetrachloride, acetaldehyde, PAHs through food, 1,4-dichlorobenzene, 

naphthalene, perchloroethylene, chloroform, and ethylene dichloride.  For formaldehyde, 

dioxin, chloroform, and ethylene dibromide, calculation of risk using U.S. EPA’s potency 

factors resulted in higher values.    

Alternate exposure scenarios.  Figure 2 also shows the median risk when using the 

alternative exposure scenarios for 1) high ambient levels of 1,3-dichloropropene (1,3-DCP) 

and vinyl chloride; 2) exposure to ETS at home for 1,3-butadiene, formaldehyde, benzene, 

acetaldehyde, naphthalene, and other PAHs; and 3) homes with extensive use of 1,4-

dichlorobenzene (1,4-DCB) products.  For each of these cases, the additional risk was about 

an order of magnitude or less.   

Alternate toxicity.  A comparison of the mean risks by pathway and selected 

compounds using the OEHHA and U.S. EPA cancer potency factors is shown in Figure 3.  

Total risk using the OEHHA values is 6 x 10-4, compared with 1 x 10-3 using U.S. EPA 

values.  Inhalation accounts for 83% and ingestion for 17% of total risk if the OEHHA 

values are used.  Using U.S. EPA values, inhalation is assigned 41% of risk and 59% goes 

to ingestion, with dioxin responsible for 58% of total risk.   

Sources of exposure.  If we compare the baseline mean risks from an exposure 

perspective, 69% of total risk comes from exposures occurring indoors (52% in the home), 

9% from outdoors, 7% from travel time, and 15% from food.  From a source rather than 
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time-activity perspective, the distribution changes, where 35% of risk comes from indoor 

sources (27% in the home), 50% from outdoor sources, including mobile sources, and 15% 

from food.  If we consider exposures from the PAHs and dioxin in food to come from either 

mobile or industrial sources, then the outdoor source contribution to risk becomes 65%.   

We also examined source contributions to inhalation exposure for the Group 2 VOCs 

and the PAHs.  While Group 2 VOCs and naphthalene had higher contributions from indoor 

exposures than outdoor exposures, the source contribution profiles differed depending on the 

compound (Table 5).  Figure 4 shows more detail for benzene, formaldehyde, and PAH-B2.  

For benzene, exposures indoors at home and in other indoor microenvironments (work, 

shopping, dining) compose more than 50% of exposure, on average.  Benzene sources, 

however, are shown to be primarily (median of 80%) from the outdoors.  Formaldehyde 

sources tend to be indoors, but outdoor sources are responsible for a median of 30% of 

formaldehyde exposure.  For PAH-B2, transportation is responsible for the highest 

percentage of exposure, and the median contribution from outdoor sources is about 90%.     

 

Discussion 

Average total lifetime cancer risk from organic hazardous air pollutants is about 6 in 

10,000 when estimated using cancer potency factors determined by California.  The U.S. 

EPA’s factors lead to a risk estimate of about 1 in 1,000.  Among the top-ranking 

compounds in both analyses are 1,3-butadiene, formaldehyde, benzene, and dioxin.  

Outdoor and indoor emissions as well as people’s diet are all important contributors to total 

risk.  By using cancer potency factors, our estimates likely represent upper bound risks, but 

the internal consistency of our methodology allows us to compare between compounds and 

with other published studies.   



18 

Comparison with other studies.  We first place our findings in context by comparing 

our results to previous risk assessments.  If we look at median risks from our study using 

U.S. EPA cancer potencies and the 1996 NATA (U.S. EPA 1996b), for most compounds we 

calculated higher risks.  We saw increases for compounds with indoor sources, such as 

formaldehyde and chloroform, as well as for some compounds with primarily outdoor 

sources, such as acetaldehyde, benzene and 1,3-butadiene.  Formaldehyde and acetaldehyde 

demonstrated the greatest differences in risk between personal and ASPEN exposure values.  

Some of the differences between the studies may be due to the tendency of  ASPEN to 

underestimate concentrations when compared with ambient monitors (U.S. EPA 1996a).  

Compared with an earlier risk study by McCann et al. we find that our median risks are 

lower, possibly because McCann’s data were from more than twenty years ago (McCann et 

al. 1986), when some chemicals were used more widely, resulting in higher concentrations 

A risk assessment using personal exposures measured for inner-city teenagers in Los 

Angeles and New York City provides a more direct comparison to our results for Group 2 

compounds.  Sax et al. found that of the VOCs, formaldehyde and 1,4-dichlorobenzene were 

the primary risk drivers (Sax et al. 2006).  Their study had several high 1,4-dichlorobenzene 

homes, explaining the importance of this compound in this population.  Our inclusion of 

high 1,4-dichlorobenzene homes shows a similar result, with this compound increasing in the 

risk ranking (Figure 2).  Sax et al. also did an indoor/outdoor source apportionment using a 

mass balance model, producing similar percentage contributions to personal risks from indoor 

and outdoor sources from all matched compounds between our studies, Figure 4.  These 

study similarities may partially be due to the fact that Sax et al. was a primary source for the 

indoor/outdoor ratios we used, but our concentration inputs and time activity were for a much 

broader population than in Sax et al.  Our analysis found about the same mean percentage 

from indoor home sources and a higher percentage from outdoor sources, but we included 
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additional indoor and outdoor microenvironments not distinguished in Sax et al.    Our 

risks are also similar to those calculated by Payne-Sturges using personal monitoring data in 

Baltimore. 

Uncertainties in cancer potency.  While we attempted to explore uncertainty in 

cancer potency factors by using OEHHA and U.S. EPA values, actual uncertainty in these 

values greatly exceeds the differences in the values used by these agencies.  Some 

assumptions may systematically bias risk upwards across all compounds. For example, the 

unit risk assumes a standard body weight (70 kg) and average breathing rate (20 m3/day), 

both of which do not reflect the variability of the population at large  (U.S. EPA 1997).  

Assumptions such as these may bias our estimates but would not change the ranking of 

compounds.  

On the other hand, other assumptions could dramatically influence the risk estimates 

for individual compounds. In particular, for compounds for which the cancer-causing 

potential is due to cell death and proliferation, rather than genotoxiciy, the linear at low dose 

assumption may not be applicable.  Evidence for some compounds indicates a “threshold” 

rather than linear dose-response, which implies that short-term high exposures could be 

important because of the cellular damage that could lead to cancer.  Our analysis addresses 

only long-term chronic exposures, which is appropriate under the current linear framework 

for cancer potency estimation but may need to be re-evaluated in the future.   

The U.S. EPA is currently re-assessing formaldehyde (U.S. EPA 2007) based on 

studies that show that formaldehyde may follow a hockey or J-shaped dose response (Conolly 

et al. 2003, 2004).  This is supported by the finding of a lack of increased formaldehyde in 

blood of the metabolized DNA protein cross-links in exposed rats (Heck and Casanova 

2004).  Also, some analyses have called into question the effect found in the occupational 

studies used to derive the formaldehyde risk (Heck and Casanova 2004; Marsh et al. 1992).  
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Based on some of these arguments, the 1999 NATA uses a lower unit risk (three orders of 

magnitude less then the IRIS value) for formaldehyde.  Using this unit risk value, the 

formaldehyde risk, based on the median personal exposure in our model, drops to 9 x 10-8 

from 2 x 10-4 (using the U.S. EPA risk) or 9 x 10-5 (using the OEHHA risk).  While the U.S. 

EPA considered formaldehyde a probably human carcinogen, in 2004, the International 

Agency for Research on Cancer (IARC) deemed that there was sufficient evidence to 

consider formaldehyde a human carcinogen based on the epidemiology for nasopharyngeal 

cancer, in particular (International Agency for Research on Cancer 2004).  This clearly 

demonstrates that there are potentially large uncertainties associated with interpretation of 

similar evidence, as well as ongoing changes in cancer potency estimation, making our risk 

rankings far from static.  

Also being reassessed is chloroform, which has been found to be cytotoxic, rather 

than genotoxic (Golden et al. 1997; Tan et al. 2003).  Dioxin is also likely to be a tumor 

promoter, rather than an initiator (Popp et al. 2006; Schwarz and Appel 2005).  Questions 

regarding the main epidemiological studies used in assessing dioxin risk relate to the method 

and difficulty of measuring and reconstructing exposure, the high levels of exposure, and the 

lack of quantification of potential exposure to other highly toxic compounds (Crump et al. 

2003; Starr 2003).   

Another interesting point with regard to toxicity is the difference in estimates for 

benzene provided by the US EPA.  The risks differ by almost a factor of 4 due to the 

difference in dose-response predicted by two different exposure assessments of the same 

cohort.  Benzene is the compound with the strongest human evidence for carcinogenicity, 

such that human epidemiology can be used to derive the cancer potency.  However, we see 

that the estimated potency factor can depend on assumptions within the analysis, and is far 
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from a defined quantity. Future work would benefit from the ability to better characterize the 

uncertainty surrounding model choices in the development of cancer potency factors.   

Uncertainties in exposure.  Concentration data are lacking for non-home 

microenvironments for many compounds, especially in workplaces and other indoor 

microenvironments, leading to greater uncertainty in these distributions.  For example, while 

air risk from PAHs was not high in our risk ranking, we found that travel exposures may be 

important for this group.  We were unable to find on-road or in-vehicle PAH congener data 

at the time of our analysis, therefore we used a Danish study.   However, since diesel 

passenger cars are used more commonly in Europe, the U.S. PAH air mixture from mobile 

sources is probably different, particularly since diesel has been found to emit more of the 

lower-weight PAHs (Marr et al. 1999; Rogge et al. 1993; Shah et al. 2005; Westerholm and 

Hang 1994).   

Group 1 compound concentrations were modeled, and therefore we do not have 

ambient or in-microenvironment data for these compounds.  We are assuming that ASPEN 

is providing a reasonable estimate of the potential exposures to Group 1, and the high ends of 

these compounds’ distribution were still relatively low.  Measurement data, however, would 

validate whether or not ASPEN is under-predicting concentrations for these compounds.   

We were also limited by a small number of VOC studies in other microenvironments.  

Despite this, because the contribution to total exposure from the home drives risk for the 

baseline population, this data scarcity should not add a disproportionate amount of 

uncertainty for non-industrial workers.  

Uncertainties in PAH ingestion arise from the use of B[a]P intake values for the US to 

extrapolate to total PAH food intake.  We found that B[a]P exposure values in the US, 

compared to several European countries, are about two to four times less.  The variability of 

exposure through food can also be influenced by the distribution of foodstuffs, which can 
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result in ingestion far from the source of environmental contamination; some types of 

cooking, particularly grilling meat (Kazerouni et al. 2001), which increases PAH 

concentration; and differences in intake rates. 

The baseline exposure may not include specific groups of the population that may 

have a separate and much higher exposure distribution, such as people who are exposed to 

chemicals at work, live in a highly industrial region, or have large contributions from sources 

in their homes.  In some cases, such as the Group 1 compounds, even the counties with the 

highest 1% of modeled outdoor concentrations did not result in significant contributions to 

total risk.  It is possible that we have underestimated exposure to Group 1 compounds, 

however, the risk is so low from these compounds that the actual concentrations would have 

to be much higher for most of the Group 1 compounds to confer high risks.  In contrast, the 

subset of homes with a separate exposure distribution to 1,4-dichlorobenzene was highly 

exposed enough that it becomes a major risk driver for these households.   

A key question is therefore what percentage the population would fall into these high 

risk categories.  According to an analysis of the National Health and Nutrition Examination 

Survey III (NHANES III) about 4% of a subsample of 982 subjects reported using mothballs, 

9% reported toilet bowl deodorizer use, and 32% air freshener use.  The first two products 

are the most likely sources of 1,4-dichlorobenzene, although some air freshener products may 

contain it.  This study also found a higher probability of 1,4-dichlorobenzene product usage 

with non-whites (Churchill et al. 2001), supported by findings from the TEAM studies in Los 

Angeles  (Wallace 1991b) as well as studies finding higher 1,4-dichlorobenzene exposures 

among non-white participants (Adgate et al. 2004; Sax et al. 2004).  These percentages of 

the population may not be large, but the 1,4-dichlorobenzene risk becomes a significant risk 

driver.  We note that there may also be higher naphthalene exposures among mothball users, 

but sufficient data to estimate this potential impact were not available.  Non-smokers living 
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with smokers, which amounts to about 17% of households as of 1991 (U.S. Department of 

Health and Human Services 2006), also have elevated risks, particularly from 1,3-butadiene.  

For the high exposure Group 1 scenarios, the 1% of counties with the highest average 

concentrations includes high population counties, such that about 10-15% of the population 

live in these counties.   

Other exposure assessment uncertainties pertain to the data for input distributions.  

Study methods can also influence the measurement of concentrations. Many studies (RIOPA, 

Minnesota, and NHEXAS) used passive charcoal badges, which have been shown to have 

high detection limits, and a negative bias in comparison to active sampling methods (Chung 

et al. 1999; Gordon et al. 1999).  While we did not notice large differences between studies 

with different methods (except for the percentage of non-detects), it is possible that there is 

some bias due to measurement methods.    

Another uncertainty is that the concentrations in the model for Group 2 compounds 

came from predominantly urban studies, with limited suburban data, and may not be 

representative of non-urban areas.  Additionally, compounds from common sources, for 

example, mobile sources, would exhibit high correlations, and therefore their concentrations 

would be expected to be related.  We were able to incorporate correlations between PAH 

congeners, however, we could not do so for other compounds.   

One possibly high risk HAP that was not included in our analysis is diesel exhaust.  

Diesel particulate matter is a significant exclusion from our HAPs list.  A sample calculation 

using the 1999 NATA ambient concentrations for diesel PM and a recommended inhalation 

unit risk from OEHHA gives us a risk of 2.7 x 10-4, which is on the order of the dioxin risk.  

The difficulty with diesel PM is that it is more difficult to quantify in measurement studies, as 

usually elemental carbon is used but only as a proxy, thus we chose to exclude it.   
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Additional uncertainties about the exposure assessment arise from the time-activity 

estimates and population assumptions.  The time activity and exposures are calculated for 

18-65 year-olds and extrapolated to a lifetime.  We do not expect the differences for 

childhood and old age to be much greater than these adult exposures, although these 

omissions may create some bias in the results.  We have tried to preserve the relationship 

between activities in broad categories across a day, however we are unable to create an 

accurate representation of long term time activity patterns.  Our risks are based on the 

assumption that people’s week-long activities will not vary on average over time.  On an 

individual level, this would misstate a person’s variability in time activity (i.e., by 

considering shopping/dining to either occur every day or no days).  When incorporated 

across the population, however, we would still be able to capture the population variability in 

activity patterns and therefore personal exposures.  While we do not expect that day-to-day 

behavior would exhibit large differences over time, future exposure modeling would benefit 

from the inclusion of longitudinal patterns of time use.   

Conclusions.  In conclusion, this analysis has attempted to estimate cancer risk from 

exposure to hazardous air pollutants to a general population, as well as high risk scenarios for 

certain compounds.  The risk to the general population is two orders of magnitude larger 

than the EPA acceptable risk level.  Including risks from highly exposed and susceptible 

subpopulations would increase this risk.  Because regulatory decisions are based on risk 

evaluations, it is important to know where exposures are coming from and to include as much 

of the current toxicological information as possible. Our analyses provide insight not only 

about the high-risk compounds, but also about the predominant sources of exposure for those 

compounds, which will allow for more effective means of exposure reduction. Future 

research should focus on refining toxicity evidence for the high-risk compounds in our 
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analysis and on filling some identified microenvironmental exposure gaps, to further reduce 

uncertainties in decisions regarding prioritization among HAPs control measures.   
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Table 1:  Exposure distributions for Group 1 compounds (all lognormal) 
 
Compound (μg/m3)a  GM  GSD  
1,3-dichloropropene  0.067 2.609  
High 1,3-dichloropropene 0.23 1.13  
Carbon tetrachloride  0.880 1.002  
Ethylene dibromide  0.008 1.002  
Ethylene dichloride  0.061 1.057  
Vinyl chloride   0.001 4.966  
High vinyl chloride  0.02 2.37  
 
a All compound concentrations from (U.S. EPA 1996b)
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Table 2: Distributions of concentration inputs in μg/m3 for Group 2 compounds 
  
Compound  Home   Officel  Commute Dining   Grocery  Non-grocery  Outdoor/Other 

(LogN)   (LogN)  (LogN)     (LogN)  (LogN)  (LogN) 
                

GM, GSD  GM, GSD GM, GSD Distribution  GM, GSD GM, GSD GM, GSD  
Formaldehyde  18, 2a, b, c, d    15,1.5e  11, 1.5f, g Bet (1.4, 7.3)f  14, 1.5 f  21, 2.7f  2.5, 3.0a, b, d   

Acetaldehyde  9, 2a, c   7.0, 1.6e  4.3, 1.4f, g Gam (39, 0.9)f  21, 2.1f  10, 2.4f   4.7, 1.4a, b, c, d   

1,3-Butadiene  0.3, 3.7a, d  0.2, 3.4e  1.5, 2.1f, g LogN (1.0, 6.3)f  0.2, 3.4f,  0.2, 3.4f  0.1, 3.6a   

Benzene   2.1, 3.1a, d, h, i, j, k, l, m, n 3.5, 1.8e  6.3, 1.9f, g, o LogN (3.1, 2.1)f  1.7, 1.6 f  1.7, 2.1f  1.8, 1.9a, d, i, j, k, m  
 
Methylene chloride 0.8, 5.8a, i, j, m   0.7, 6.7e 1.4, 2.0f, o LogN (1.4, 5)f  1.1, 2.7f   2.1, 5.8f  0.4, 3.5a, d, i, j, m    
              
Chloroform  1.2, 2.8a, d, h, i, j, k, l, m  0.3, 3.0e  0.4, 2.4f  Gam (1.9, 0.9)f  1.2, 2.3f  0.4, 3.7f  0.2, 3.5a, d, i, j, l., m    
          
Trichloroethylene  0.2, 4.1a, h, i, j, m  0.3, 4.0e  0.3, 2.4f, o LogN (0.3, 5.2)f  0.3, 2.1f  0.4, 5.0f  0.2, 2.5a, d, i, j, l, m    
                   
Perchloroethylene 0.9, 4.3a, d, h, i , l, m   2.0, 3.1e  0.4, 2.5f, o LogN (2.1, 5.6)f  0.9, 2.5f  1.4, 3.4f  0.4, 4.2a, d, i, j, k, l, m   
                   
1,4-Dichlorobenzene 0.4, 6.9h, k, l, m  0.9, 4.5e  0.5, 2.6f  LogN (1.5, 5.9)f  2.7, 3.3f  1.7, 7.7f  0.1, 6.2a, d, l, m  
 
High 1,4-DCB  18, 4.5a, i   
 
Studies:  a(Sax et al. 2004), b(Reiss et al. 1995), c(Zhang et al. 1994), d(Weisel et al. 2005), eBASE study data (Environmental Health and Engineering 2002; Girman et al. 1999), f(Loh et al. 
2006), g(Rodes et al. 1998), h(Van Winkle and Scheff 2001), i(Adgate et al. 2004b), j(Payne-Sturges et al. 2004), k(Clayton et al. 1999), l(Adgate et al. 2004a), m(Sexton et al. 2004), n(Gordon et 
al. 1999), o(Batterman et al. 2002); NOTE:  For offices and grocery stores, the non-grocery distribution was used for 1,3-butadiene; Distribution parameters: Lognormal = LogN (geo mean, 
geo std dev), Gamma = Gam (scale, shape), Beta = Bet (alpha, beta) 
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Table 3:  Group 3 concentrations and TEFs 
 
All Lognormal  Home  Commute  Outdoor   TEF  
μg/m3   GM, GSD GM, GSD  GM, GSD    
PAH B2            
benzo[a] anthracene 3E-05, 3.8a 8E-05, 2.5a  8E-05, 2.5a  0.1b 

benzo[b] fluoranthene 1E-04, 3.2a 3E-04, 2.1a  3E-04, 2.1a  0.1b 

Benzo[a] pyrene  6E-05, 2.8a 2E-03, 2.0c,d  9E-05, 2.4a  1b 

Chrysene/Iso-Chrysene 2E-04, 2.5a 3E-04, 2.1a  3E-04, 2.1a  0.001b 

Dibenz[a,h]anthracene 8E-06, 3.4a 2E-05, 1.9a  2E-05, 1.9a  1b 
Indeno (1,2,3-cd)pyrene  1E-04, 4.7a 2E-03, 2.1c,d  3E-04, 2.4a  0.1b 
 
PAH CD            
Anthracene  1E-03, 2.6a 8E-04, 2.0a  8E-04, 2.0a  0.0005e 

Benzo[ghi] perylene 2E-04, 3.7a 4E-03, 1.8c,d  3E-04, 2.5a  0.02e 

Phenanthrene  3E-02, 2.7a 1E-03, 1.8c,d  2E-02, 1.8a  0.0005e 

Pyrene   2E-03, 2.8a  2E-03, 1.8a  2E-03, 2.1a  0.001e 

Fluoranthene  3E-03, 2.3a 2E-03, 1.7a  3E-03, 2.2a  0.05e 

            
Naphthalene  9E-01, 4.9f, g 2E-01, 3.0f, g  1E-01, 2.3f, g   0.031b 

            
Ingestion             
mg/kg-d (TEF weighted) GM, GSD         
PAH   1.26E-06, 1.54h         
Dioxin   5.36E-10, 1.55i   
       
a(Naumova et al. 2002) 
b(California EPA 2005) 
c(Nielsen 1996) 
d(Lim et al. 1999) 
e(Larsen and Larsen 1998) 
f(Van Winkle and Scheff 2001) 
g(Jia et al. 2005) 
h(Kazerouni et al. 2001) 
i(U.S. EPA 2003) 
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Table 4: Cancer unit risks and potency factors 
 
    U.S. EPA  CA (OEHHA) 
    (per ug/m3)   (per ug/m3) 

  
1,3-Butadiene   3.00E-05  1.70E-04 
Methylene Chloride  4.70E-07  1.00E-06 
Chloroform   2.30E-05  5.30E-06 
Benzene    7.8a/2.20E-06  2.90E-05 
(high/low for U.S. EPA)  
Carbon tetrachloride  1.50E-05  4.20E-05 
Trichloroethylene   N/A   2.00E-06 
Perchloroethylene  N/A   5.90E-06 
1,4-Dichlorobenzene  N/A   1.10E-05 
Formaldehyde    1.30E-05  6.00E-06 
Acetaldehyde   2.20E-06  2.70E-06 
1,3-dichloropropene  4.00E-06  N/A 
Ethylene Dibromide   3.00/6.00E-04b  7.10E-05 
(central/high for U.S. EPA)  
Ethylene Dichloride  2.60E-05  2.10E-05 
Vinyl Chloride  
 (continuous adult)  4.40E-06  N/A 
Vinyl Chloride  
 (continuous from birth)  8.80E-06c  7.80E-05 
    
B(a)P (inhalation)  N/A   1.10E-03 
    
B(a)P     7.3   12 
(oral slope factor in  
(mg/kg/day)-1)     
 
Dioxin     1.00E-03  1.30E-04 
 (oral slope factor in 
 (pg/kg/day)-1)   
 
aUsed higher estimate for comparisons 
bUsed upper bound estimate for comparisons 
cUsed continuous from birth for comparisons
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Table 5: Median indoor source contributions to HAPs risk from 
inhalation exposure.  
 
   Indoor Sources 
Acetaldehyde  15% 
Formaldehyde  70% 
  
1,3-Butadiene  10% 
Benzene   20% 
  
Chloroform  70% 
Methylene Chloride 45% 
1,4-Dichlorobenzene 35% 
Perchloroethylene 30% 
Trichloroethylene  25% 
  
PAH B2   10% 
PAH CD  20% 
Naphthalene  60% 



40 

Figure Legends 

 

Figure 1:  Representation of personal exposure and risk model.   Refer to tables for 

compound concentrations.  G1 = Group 1 VOCs, G2 = Group 2 VOCs, NHAPS = National 

Human Activity Patterns Survey, PAH = polycyclic aromatic hydrocarbons, μEi = exposure 

in microenvironment i.   

 

Figure 2:  Baseline risk ranking using OEHHA toxicity estimates. 1,3-Dichloropropene does 

not have a unit risk value from OEHHA, therefore the U.S. EPA risk estimate was used.     

● indicates the distribution medians if the U.S. EPA risk estimates were used (where 

available).  Benzene risk uses unit risk of 2.2 e-6 (μg/m3)-1.  ▲ indicates the risk using the 

unit risk of 7.8 e-6 (μg/m3)-1.  X indicates the median of the distributions of the high 

exposure scenarios.  Smoking home exposure accounts for the high exposure for benzene, 

formaldehyde, 1,3-butadiene, acetaldehyde, naphthalene, and PAH CD and PAH B2.  High 

home exposure from mothballs and associated products account for 1,4-dichlorobenzene.  

The top 1% emission counties are the high scenarios for 1,3-dichloropropene  and vinyl 

chloride.  Bars represent 5th, and 95th percentiles.  Boxes represent the 25th, 50th, and 75th 

percentiles. 

 

Figure 3:  Risk from ingestion and inhalation.  Figure 3a shows the mean total risk 

calculated with OEHHA’s cancer potency values (6 x 10-4) and Figure 3b shows the median 

total risk using the federal U.S. EPA’s values (1 x 10-3).  The inhalation fraction is further 

broken down into several of the higher risk compounds. 
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Figure 4:  The contribution of exposure in microenvironments compared to indoor (home 

and other) and outdoor source contribution to inhalation risk for benzene, formaldehyde, and 

the TEF-weighted exposures to PAH B2.  Other indoor includes work in offices, shops, and 

restaurants.  Trans = transportation microenvironment.  Bars represent 5th, and 95th 

percentiles.  Boxes represent the 25th, 50th, and 75th percentiles. 
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Figure 1:  Representation of personal exposure and risk model.   Refer to tables for 

compound concentrations.  G1 = Group 1 VOCs, G2 = Group 2 VOCs, NHAPS = National 

Human Activity Patterns Survey, PAH = polycyclic aromatic hydrocarbons, μEi = exposure 

in microenvironment i.   
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Figure 2:  Baseline risk ranking using OEHHA toxicity estimates. 1,3-Dichloropropene does 

not have a unit risk value from OEHHA, therefore the U.S. EPA risk estimate was used.     

● indicates the distribution medians if the U.S. EPA risk estimates were used (where 

available).  Benzene risk uses unit risk of 2.2 e-6 (μg/m3)-1.  ▲ indicates the risk using the 

unit risk of 7.8 e-6 (μg/m3)-1.  X indicates the median of the distributions of the high 

exposure scenarios.  Smoking home exposure accounts for the high exposure for benzene, 

formaldehyde, 1,3-butadiene, acetaldehyde, naphthalene, and PAH CD and PAH B2.  High 

home exposure from mothballs and associated products account for 1,4-dichlorobenzene.  

The top 1% emission counties are the high scenarios for 1,3-dichloropropene  and vinyl 
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chloride.  Bars represent 5th, and 95th percentiles.  Boxes represent the 25th, 50th, and 75th 

percentiles. 
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Figure 3:  Risk from ingestion and inhalation.  The first figure shows the mean total risk 

calculated with OEHHA’s cancer potency values (6 x 10-4) and the second figure shows the 

median total risk using the federal U.S. EPA’s values (1 x 10-3).  The inhalation fraction is 

further broken down into several of the higher risk compounds.   
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Figure 4:  The contribution of exposure in microenvironments compared to indoor (home 

and other) and outdoor source contribution to inhalation risk for benzene, formaldehyde, and 

the TEF-weighted exposures to PAH B2.  Other indoor includes work in offices, shops, and 

restaurants.  Trans = transportation microenvironment.  Bars represent 5th, and 95th 

percentiles.  Boxes represent the 25th, 50th, and 75th percentiles. 
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